A Porosity Result in Convex Minimization
نویسندگان
چکیده
We study the minimization problem f (x) → min, x ∈ C, where f belongs to a complete metric space of convex functions and the set C is a countable intersection of a decreasing sequence of closed convex sets Ci in a reflexive Banach space. Let be the set of all f ∈ for which the solutions of the minimization problem over the set Ci converge strongly as i→∞ to the solution over the set C. In our recent work we show that the set contains an everywhere dense Gδ subset of . In this paper, we show that the complement \ is not only of the first Baire category but also a σ-porous set.
منابع مشابه
Strong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
متن کاملA General Iterative Method for Constrained Convex Minimization Problems in Hilbert Spaces
It is well known that the gradient-projection algorithm plays an important role in solving constrained convex minimization problems. In this paper, based on Xu’s method [Xu, H. K.: Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl. 150, 360-378(2011)], we use the idea of regularization to establish implicit and explicit iterative methods for finding the approximate ...
متن کاملA Simple Analysis for Exp-concave Empirical Minimization with Arbitrary Convex Regularizer
In this paper, we present a simple analysis of fast rates with high probability of empirical minimization for stochastic composite optimization over a finite-dimensional bounded convex set with exponentially concave loss functions and an arbitrary convex regularization. To the best of our knowledge, this result is the first of its kind. As a byproduct, we can directly obtain the fast rate with ...
متن کاملSDO relaxation approach to fractional quadratic minimization with one quadratic constraint
In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...
متن کاملA Comparison of Mixed - Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems
We study a generic minimization problem with separable non-convex piecewise linear costs, showing that the linear programming (LP) relaxation of three textbook mixed-integer programming formulations each approximates the cost function by its lower convex envelope. We also show a relationship between this result and classical Lagrangian duality theory.
متن کامل